Chemical processing upto yarn stage

Polyester - PET (Poly Ethylene Terephthalate)

GMT 11:52 2015 Tuesday ,09 June

Sriyadithatextile - Polyester - PET (Poly Ethylene Terephthalate)

Polyester
TFA

Polyester is a synthetic fiber derived from coal, air, water, and petroleum. Developed in a 20th-century laboratory, polyester fibers are formed from a chemical reaction between an acid and alcohol. In this reaction, two or more molecules combine to make a large molecule whose structure repeats throughout its length. Polyester fibers can form very iong molecules that are very stable and strong.

Polyester is used in the manufacture of many products, including clothing, home furnishings, industrial fabrics, computer and recording tapes, and electrical insulation. Polyester has several advantages over traditional fabrics such as cotton. It does not absorb moisture, but does absorb oil; this quality makes polyester the perfect fabric for the application of water-, soil-, and fire-resistant finishes. Its low absorbency also makes it naturally resistant to stains. Polyester clothing can be preshrunk in the finishing process, and thereafter the fabric resists shrinking and will not stretch out of shape. The fabric is easily dyeable, and not damaged by mildew. Textured polyester fibers are an effective, nonallergenic insulator, so the material is used for filling pillows, quilting, outerwear, and sleeping bags.

History

In 1926, United States-based E.I. du Pont de Nemours and Co. began research into very large molecules and synthetic fibers. This early research, headed by W.H. Carothers, centered on what became nylon, the first synthetic fiber. Soon after, in the years 1939-41, British research chemists took interest in the du Pont studies and conducted their own research in the laboratories of Calico Printers Association, Ltd. This work resulted in the creation of the polyester fiber known in England as Terylene.

In 1946, du Pont purchased the right to produce this polyester fiber in the United States. The company conducted some further developmental work, and in 1951, began to market the fiber under the name Dacron. During the ensuing years, several companies became interested in polyester fibers and produced their own versions of the product for different uses. Today, there are two primary types of polyester, PET (polyethylene terephthalate) and PCDT (poly-1, 4-cyclohexylene-dimethylene terephthalate). PET, the more popular type, is applicable to a wider variety of uses. It is stronger than PCDT, though PCDT is more elastic and resilient. PCDT is suited to the heavier consumer uses, such as draperies and furniture coverings. PET can be used alone or blended with other fabrics to make clothing that is wrinkle and stain resistant and retains its shape.

Raw Materials

Polyester is a chemical term which can be broken into poly, meaning many, and ester, a basic organic chemical compound. The principle ingredient used in the manufacture of polyester is ethylene, which is derived from petroleum. In this process, ethylene is the polymer, the chemical building block of polyester, and the chemical process that produces the finished polyester is called polymerization.

The Manufacturing
Process

Polyester is manufactured by one of several methods. The one used depends on the form the finished polyester will take. The four basic forms are filament, staple, tow, and fiberfill. In the filament form, each individual strand of polyester fiber is continuous in length, producing smooth-surfaced fabrics. In staple form, filaments are cut to short, predetermined lengths. In this form polyester is easier to blend with other fibers. Tow is a form in which continuous filaments are drawn loosely together. Fiberfill is the voluminous form used in the manufacture of quilts, pillows, and outerwear. The two forms used most frequently are filament and staple.

Manufacturing Filament Yarn

Polymerization

  • To form polyester, dimethyl terephthalate is first reacted with ethylene glycol in the presence of a catalyst at a temperature of 302-410°F (150-210°C).
  • The resulting chemical, a monomer (single, non-repeating molecule) alcohol, is combined with terephthalic acid and raised to a temperature of 472°F (280°C). Newly-formed polyester, which is clear and molten, is extruded through a slot to form long ribbons.

Drying

  • After the polyester emerges from polymerization, the long molten ribbons are allowed to cool until they become brittle. The material is cut into tiny chips and completely dried to prevent irregularities in consistency.

Melt spinning

  • Polymer chips are melted at 500-518°F (260-270°C) to form a syrup-like solution. The solution is put in a metal container called a spinneret and forced through its tiny holes, which are usually round, but may be pentagonal or any other shape to produce special fibers. The number of holes in the spinneret determines the size of the yarn, as the emerging fibers are brought together to form a single strand.
  • At the spinning stage, other chemicals may be added to the solution to make the resulting material flame retardant, antistatic, or easier to dye.

  

Drawing the fiber

  • When polyester emerges from the spinneret, it is soft and easily elongated up to five times its original length. The stretching forces the random polyester molecules to align in a parallel formation. This increases the strength, tenacity, and resilience of the fiber. This time, when the filaments dry, the fibers become solid and strong instead of brittle.
  • Drawn fibers may vary greatly in diameter and length, depending on the characteristics desired of the finished material. Also, as the fibers are drawn, they may be textured or twisted to create softer or duller fabrics.

Winding

  • After the polyester yarn is drawn, it is wound on large bobbins or flat-wound packages, ready to be woven into material.

Global Textile News

Seen rising 10 - 15%

2017-18 cotton production on higher acreage

google
Not withstanding crop damage due to floods in Gujarat, the largest cotton producing state, India’s cotton output in the forthcoming 2017-18 season starting October is…Read more

FESPA 2017 (German) press release

Colorjet Launching Tech Loaded Digital Textile Printer TXF with Japanese Technology at FESPA Hamburg 2017

FESPA
Colorjet Launching Tech Loaded Digital Textile Printer TXF with Japanese Technology at FESPA Hamburg 2017   TXF printer offers speeds of up to 24 sq.…Read more

Vietnam National Textile and Garment Group

City to host textile industry expo

google
HCM CITY — The Vietnam Saigon Textile and Garment Industry/Fabric and Garment Accessories Expo (Saigon Tex 2017) that will showcase high-end machinery and equipment and…Read more

#CottonIs-Cool

Smriti Irani’s cotton campaign trends on Twitter

google
A year after the hashtag 'IWearHandloom' trended on Twitter, Union Textile minister Smriti irani is back at it. On Tuesday, she tweeted a selfie in a cotton…Read more

Self-Employed Women's Association

"Empowering Women" in the Garment Industry

google
When you walk into the SEWA (Self-Employed Women's Association) Ruaab production centre in Sunder Nagri, Northeast Delhi, you will see between 10-15 women sitting cross-legged on…Read more

Revenue and its forecasts

Global Textile Dyes market 2017

google
Textile Dyes Market analyzed the Industry region, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry growth rate etc. In the…Read more

 العرب اليوم -